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1.1 Conformation of a Polymer Chain

A polymer chain is a linear molecule containing a large number of atoms. Prior
to considering the shape of a polymer chain, let us focus on the local structure of
a polymer composed o�our carbons (Figure 1.2). When a carbon–carbon single
bond is present between the monomers, the distance between each monomer
is approximately 1.5 Å. Additionally, if carbons are connected by a single bond,
the bond angle is essentially constant at 109.5°. Even if the bond length and
bonding angle are constant, rotation around the bond axis, represented by , is
allowed, resulting in conformational flexibility. In fact, the value of takes the
trans ( = 0°) or gauche ( =± 120°) stable angles due to steric hindrance.

Let us increase the number of carbons to 100 and consider the shape of the
resulting polymer chain. For example, if all the bonds take trans conformations,
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the polymer chain takes an elongated form with an end-to-end distance of
approximately 25 nm. Conversely, if all bonds are in gauche conformations, the
polymer chain takes a helical structure, and the end-to-end distance becomes
very short. Although these structures can be realized by some specific macro-
molecules or under specific conditions, conventional polymers contain both
trans and gauche forms and have highly complicated structures. However, by
applying coarse-graining concepts, su�ciently long polymer chains can be
approximated to a model chain regardless of the details of the monomer unit.
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Figure 1.2 Conformation o�ocal structures containing four carbon atoms (a) and the energy
landscape (b).
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the polymer chain takes an elongated form with an end-to-end distance of
approximately 25 nm. Conversely, if all bonds are in gauche conformations, the
polymer chain takes a helical structure, and the end-to-end distance becomes
very short. Although these structures can be realized by some specific macro-
molecules or under specific conditions, conventional polymers contain both
trans and gauche forms and have highly complicated structures. However, by
applying coarse-graining concepts, su�ciently long polymer chains can be
approximated to a model chain regardless of the details of the monomer unit.

1.2 Coarse-Graining of a Polymer Chain

Here, we introduce “coarse-graining,” which is an important concept in dis-
cussing polymers. Coarse-graining is one methodology for extracting the
universal characteristics of a phenomenon. Roughly speaking, coarse-graining
methods intentionally shift focus away from the trivial matters for the
characteristics o�nterest, simplify the problem, and provide the universal
characteristics. Let us see an example of coarse-graining for polymer chains.

from the discussion earlier. In principle, the bonding angle should be constant
at approximately 109.5°, and the local conformation should be trans or gauche.

some monomers together and to make a “segment.” Figure 1.3 shows a schematic
of making a segment from three monomers; as a result, a polymer chain can be
visualized as a sequence of segments. As shown in Figure 1.3, the bonds between
neighboring segments can take various angles relative to the bonds between
monomers, and the individual properties of each monomer can be masked.
Masking the individual properties of each monomer is of great importance
in polymer physics, because only under such conditions can we extract the

that has freely rotating bonds is called the segment length, which is intrinsic
to each monomer unit. Conversely, by taking the appropriate segment with
the segment length, the end-to-end distance of a polymer chain is determined
by considering a series of segments connected by freely rotating bonds. For
simplicity, this book considers polymer chains as consisting of monomers that
act as segments with freely rotating bonds, following the method of de Gennes
[1]. In other words, the monomer length is the same as the segment length, and
the degree of polymerization is the same as the number of segments.

1.3 Free Rotation Model

Chains consisting of segments with free rotation can be addressed using the free
rotation chain model. Assuming that a polymer chain consists of N vectors (ai )
of size a, the end-to-end distance (r ) of the chain is written as follows:

r = a1 + a2 + · · · + aN (1.1)

However, one simple idea justi�es this coarse graining. The idea is to combine
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Figure 1.3 Coarse-graining of monomeric units in a polymer chain.

Since it may be di�cult to start with a three-dimensional problem, let us first

problem is actually given by the familiar problem as follows:
A point proceeds +a or −a with equal probabilities in one step. How far is the

point from the origin after N steps?

In this case, the displacement, r , can be calculated as an expected value
as follows:

r = a −N
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(1.2)

r =
Eq. (1.2); the situations in which a point reaches −r and r have equal probabilities
and cancel each other. In both cases, the end-to-end distance should be consid-
ered, r
evaluate the size. In general, the absolute value of the displacement is obtained
by the square root of the root mean square ofr (<r2 1/2). Let us return to the
three-dimensional problem from here. For a general three-dimensional vectorr ,
r2 is calculated as follows:

>

< >
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r2 = r r = (a1 + a2 + · · · + aN )(a1 + a2 + · · · + aN )

=
N

i=1

ai
2 +

N

i=1

N

k≠ i

aiak = Na 2 (1.3)

Here, aiak = 0 (if i ≠ k) since each jump vector is uncorrelated ( cos =0
because the average value of bond angle is 90°). Given that the polymer chains
are isotropic, the polymer chains are considered spheres of diameter aN 1/2.
In a one-dimensional problem, some people may feel uncomfortable that
vectors can overlap each other. Although the overlap is highly reduced in the
three-dimensional space, overlap between the monomer units is permitted

is analogous to an ideal gas having no volume. Of course, the overlapping of
monomers is not allowed in real polymers; this model is incorrect except in
special cases. Despite this assumption being unrealistic, it is the foundation
for many theoretical models because the end-to-end distance of an ideal

and useful statistical model and thus provides physical quantities in simple
forms with less di�culty than other methods. Section 1.2 shows that the
Gaussian distribution successfully describes the end-to-end distance of an
ideal chain.

< > ·

< >

1.4 Statistics of a Single Polymer Chain

1.4.1 End-to-End Distance of a 1D Random Walk

In Section 1.3, the average end-to-end distance of an ideal chain was deter-

the probability that an ideal chain has a specific distance ofx. Again, let us start
with a one-dimensional problem. Assuming that the number of steps the point
proceeded in the+ direction is N + and that in the− direction is N − in the previ-
ously mentioned one-dimensional problem, the following equations are obtained:

N = N+ + N− (1.4)

x = N+ − N− (1.5)

For simplicity, we can assume that the length of a step is unity and estimate
the number of situations (W (N , x)) in the case that the point reaches x after N
steps. Because sets ofN + and N − for arriving at x are uniquely determined from
Eqs. (1.4) and (1.5), W (N , x) is estimated as the number of arrangements ofN +
pieces of “+” and N − pieces of “−” (Figure 1.4):

W (N , x) =
N
N+

= N !
(N − N+ )!N+ !

= N !
N+x

2
! N−x

2
!

(1.6)
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On the other hand, the total number of possible paths inN steps is 2N , which
is calculated as the total number of situations that can occur when selecting one
of the two choices N x after N steps is
expressed as follows:

W (N , x)
2N

= N !

2N N + x
2

! N− x
2

!
(1.7)

Calculating the exact value for all N is a very painful task; however, if we make
a proper approximation at a su�ciently large limit of N , this equation leads to a

Figure 1.4 Number of situations that
reach x in N steps (N = 10, x =+ 2).
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Gaussian distribution. Let us calculate this value following the method of Rubin-
stein and Colby [4]. First, the natural logarithm is taken of both sides of the
equation:

ln
W (N , x)

2N
= ln N ! − N ln 2 − ln N + x
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2
! (1.8)

ln N + x
2

!= ln N
2
+ x

2
N
2

+ x
2
− 1 · · · N

2
+ 2 N

2
+ 1 N

2
!

= ln N
2

! +
x ∕ 2

s=1

ln N
2

+ s (1.9)

ln N − x
2
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ln N
2

+ 1 − s (1.10)

By substituting Eqs. (1.9) and (1.10) into Eq. (1.8), one obtains the following:

ln
W (N , x)

2N
= ln N ! − N ln 2 − 2 ln N
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·



8 1 Single Polymer Chain

= ln N ! − N ln 2 − 2 ln N
2
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N
2
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2
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(1.11)

ln

N
2
+ s

N
2
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= ln
1 + 2s

N

1 + 2−2s
N

= ln 1 + 2s
N

− ln 1 + 2 − 2s
N

(1.12)

Here, we apply an important approximation of the relationship betweens and N .
s is N /2, and the number of situations corresponding to

this case is only 1. In most cases, s stays close to the origin (see one-dimensional
walks), making it su�ciently smaller than N . Here, by ignoring the case o�arge
s, which is unlikely, and only considering the case wheres <<N , the expression
can be further transformed using a Taylor expansion (ln(1 + y) ≈ y).

ln 1 + 2s
N

− ln 1 + 2 − 2s
N

2s
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N

= 4s
N

− 2
N

(1.13)

Using Eq. (1.13), Eq. (1.11) can be transformed to the following:
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Equation (1.14) can be reduced using the following Starling approximation:

N ! 2 N N
e

N
for N>> )51.1(1

ln
W (N , x)
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2
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= ln 2
N
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2N
(1.16)
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As a result, the probability is given by the following:

W (N , x)
2N

= 2
N

exp − x2

2N
(1.17)

If we consider x to be a continuous value and this function to be a continuous
function, Eq. (1.17) corresponds to a probability density distribution function.
To investigate the function, let us integrate it from−∞ to ∞ :

∞

−∞

W (N , x)
2N

dx = 2
N

∞

−∞
exp − x2

2N
dx = 2

N
2 N = 2

(1.18)

Since this calculation corresponds to calculating “the sum of probabilities,” it is

the procedure of converting discretex to continuous x. As shown in Table 1.1,
in the lattice space, when N is an even number, the probability thatx becomes
odd is 0. On the other hand, if N is an odd number, the probability that x will

x is changed to 1, 2, 3,…, the probability

from simply changing the discontinuous function to a continuous function.

Table 1.1 Number of situations reaching x in N steps.

x − 4 − 3 − 2 − 1 0 1 2 3 4

W (N, x ) N = 3 0 1 0 3 0 3 0 1 0

N = 4 1 0 4 0 6 0 4 0 1
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Figure 1.5 Probability density
distribution function of the
one-dimensional Gaussian distribution
(P1D with a = 1, N = 100).

By standardizing Eq. (1.17) by 2, the probability density function of a one-
dimensional random walk (P1D (N , x)) is obtained.

P1D (N , x) = 1

2 N
exp − x2

2N
(1.19)

·
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x )
of 0 and a variance ( x2 ) of N
expressed as follows:

f (x) = 1

√2 x2
exp −

(x − x )2

2 x2
(1.20)

At the end of the one-dimensional problem, let Eq. (1.20) be expanded to an arbi-
trary step length. When the step length isa, x = 0 and x2 = a2N , resulting in
the following:

P1D (N , x) = 1

√2 a2N
exp − x2

2a2N
(1.21)

1.4.2 End-to-End Distance of a 3D Random Walk

Let us expand the 1D discussion to three dimensions. In 3D space, the probability
that one end is at the origin and the other atr = (rx , ry, rz) is expressed as follows:

P3D (N , r )drx dry drz = P1D (N , rx)drx P1D (N , ry)dry P1D (N , rz)drz (1.22)

< >
< >

< >

< >
< >

< > < >

· ·

By obtaining the root mean square ofr from Eq. (1.3) and assuming the spatial
isotropy, the following equation is obtained:

r2 = rx
2 + ry

2 + rz
2 = Na 2

rx
2 = ry

2 = rz
2 = Na 2

3
(1.23)

Here, we focus on the x-axis component. From Eqs. (1.21) and (1.23), the follow-
ing equation is obtained:

P1D (N , rx) =
1

√2 rx
2

exp −
rx

2

2 rx
2

= 3
2 Na 2

exp −
3rx

2

2Na 2

(1.24)

y- and z-axis components are estimated in similar ways and substituted
into Eq. (1.22).

P3D (N , r ) = P1D (N , rx) P1D (N , ry) P1D (N , rz)

= 3
2 Na 2

3∕ 2

exp −
3(rx

2 + ry
2 + rz

2)

2Na 2

= 3
2 Na 2

3∕ 2

exp − 3r2

2Na 2
(1.25)

< > < > < > < >

< > < > < >

< > < >

· ·
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Compared with Eq. (1.21), the probability density functions in one dimension
and three dimensions are almost the same. However, the probability distribu-
tion that the distance between both ends becomes |r | di�ers greatly between one
dimension and three dimensions. In one dimension, the probability distribution
(r ≠ 0) is written as follows since the distance between the ends being |r | only
occurs in two cases: the cases of−r and +r .

Pr1D (N , r ) = 2 1
2 Na 2

exp − r2

2Na 2
= 2

Na 2
exp − r2

2Na 2

(1.26)

Because there is only one situation forr = 0, the probability distribution is given
by

Pr 1D (N , r ) = 1
2 Na 2

exp − r2

2Na 2
(1.27)

In the case of three dimensions, we need to consider a multiplicity factor of

4
r2 because the end-to-end distance of |r | occurs everywhere on the spherical

shell with radius | r

Pr 3D (N , r ) = 4 r2 3
2 Na 2

3∕ 2
exp − 3r2

2Na 2
(1.28)

Figure 1.6 shows the probability distributions of one-dimensional and three-

each other; in one dimension, there is a local maximum in the vicinity of r = 0,
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Figure 1.6 Probability distribution of
end-to-end distances of one-dimensional
and three-dimensional randomwalks.

whereas in three dimensions, there is a local maximum in the vicinity of aN 1/2.
Notably, the probability that the random coil returns to the vicinity of the origin

tion factor of 4 r2, as there was no significant di�erence in the probability density
distribution itsel�n one dimension and three dimensions. In three-dimensional
space, only rx = ry = rz = 0 satisfies |r | = 0, whereas there are many combinations
of rx , ry, rz that satisfies rx

2 + ry
2 + rz

2 = |r | 2, when |r | ≠
plicity causes the major di�erence in the one-dimensional and three-dimensional
probability distributions.
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