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1.1 Conformation of a Polymer Chain

A polymer chain is a linear molecule containing a large number of atoms. Prior
to considering the shape of a polymer chain, let us focus on the local structure of
a polymer composed offour carbons (Figure 1.2). When a carbon-carbon single
bond is present between the monomers, the distance between each monomer
is approximately 1.5 A. Additionally, if carbons are connected by a single bond,
the bond angle @ is essentially constant at 109.5°. Even if the bond length and
bonding angle are constant, rotation around the bond axis, represented by vy, is
allowed, resulting in conformational flexibility. In fact, the value of y takes the
trans (y = 0°) or gauche (y =+ 120°) stable angles due to steric hindrance.

Let us increase the number of carbons to 100 and consider the shape of the
resulting polymer chain. For example, if all the bonds take trans conformations,
the polymer chain takes an elongated form with an end-to-end distance of
approximately 25 nm. Conversely, if all bonds are in gauche conformations, the
polymer chain takes a helical structure, and the end-to-end distance becomes
very short. Although these structures can be realized by some specific macro-
molecules or under specific conditions, conventional polymers contain both
trans and gauche forms and have highly complicated structures. However, by
applying coarse-graining concepts, sufficiently long polymer chains can be
approximated to a model chain regardless of the details of the monomer unit.
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Figure 1.2 Conformation oflocal structures containing four carbon atoms (a) and the energy
landscape (b).
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the polymer chain takes an elongated form with an end-to-end distance of
approximately 25 nm. Conversely, if all bonds are in gauche conformations, the
polymer chain takes a helical structure, and the end-to-end distance becomes
very short. Although these structures can be realized by some specific macro-
molecules or under specific conditions, conventional polymers contain both
trans and gauche forms and have highly complicated structures. However, by
applying coarse-graining concepts, sufficiently long polymer chains can be
approximated to a model chain regardless of the details of the monomer unit.

1.2 Coarse-Graining of a Polymer Chain

Here, we introduce “coarse-graining,” which is an important concept in dis-
cussing polymers. Coarse-graining is one methodology for extracting the
universal characteristics of a phenomenon. Roughly speaking, coarse-graining
methods intentionally shift focus away from the trivial matters for the
characteristics ofinterest, simplify the problem, and provide the universal
characteristics. Let us see an example of coarse-graining for polymer chains.
The first coarse-graining is “setting the bond length as constant and the bond
angle as freely rotational.” This assumption represents a considerable “jump”
from the discussion earlier. In principle, the bonding angle should be constant
at approximately 109.5°, and the local conformation should be trans or gauche.

However, one simple idea justifies this coarse graining. The idea is to combine
some monomers together and to make a “segment.” Figure 1.3 shows a schematic
of making a segment from three monomers; as a result, a polymer chain can be
visualized as a sequence of segments. As shown in Figure 1.3, the bonds between
neighboring segments can take various angles relative to the bonds between
monomers, and the individual properties of each monomer can be masked.
Masking the individual properties of each monomer is of great importance
in polymer physics, because only under such conditions can we extract the
universal properties of the polymer chain. The length of the smallest segment
that has freely rotating bonds is called the segment length, which is intrinsic
to each monomer unit. Conversely, by taking the appropriate segment with
the segment length, the end-to-end distance of a polymer chain is determined
by considering a series of segments connected by freely rotating bonds. For
simplicity, this book considers polymer chains as consisting of monomers that
act as segments with freely rotating bonds, following the method of de Gennes
[1]. In other words, the monomer length is the same as the segment length, and
the degree of polymerization is the same as the number of segments.

1.3 Free Rotation Model

Chains consisting of segments with free rotation can be addressed using the free
rotation chain model. Assuming that a polymer chain consists of N vectors (a;)
of size a, the end-to-end distance (r) of the chain is written as follows:

r=a;+a,+---+ ay (1.1)
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Figure 1.3 Coarse-graining of monomeric units in a polymer chain.

Since it may be difficult to start with a three-dimensional problem, let us first
consider the problem in one dimension. The one-dimensional version of this
problem is actually given by the familiar problem as follows:

A point proceeds +a or —a with equal probabilities in one step. How far is the
point from the origin after N steps?

This problem is equivalent to tossing coins in high school mathematics.
In this case, the displacement, r, can be calculated as an expected value
as follows:

(@]

(1.2)

The result of r = 0 is not essential. This answer is obvious from the expression of
Eq. (1.2); the situations in which a point reaches —r and r have equal probabilities
and cancel each other. In both cases, the end-to-end distance should be consid-
ered, r. The absolute value of the displacement must be considered to correctly
evaluate the size. In general, the absolute value of the displacement is obtained
by the square root of the root mean square ofr (<r>>'2). Let us return to the
three-dimensional problem from here. For a general three-dimensional vectorr,
<r?>is calculated as follows:
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N N ;
=z:ai2+z:z:aiak=Na2 (1.3)

Here, a,a, = 0 (if i=k) since each jump vector is uncorrelated (< cosf>=0

because the average value of bond angle is 90°). Given that the polymer chains
are isotropic, the polymer chains are considered spheres of diameteraN "2,

In a one-dimensional problem, some people may feel uncomfortable that
vectors can overlap each other. Although the overlap is highly reduced in the
three-dimensional space, overlap between the monomer units is permitted
under this model. This polymer chain is called an ideal chain [2—4]. This concept

is analogous to an ideal gas having no volume. Of course, the overlapping of
monomers is not allowed in real polymers; this model is incorrect except in

special cases. Despite this assumption being unrealistic, it is the foundation
for many theoretical models because the end-to-end distance of an ideal
chain follows the Gaussian distribution. The Gaussian distribution is a simple

and useful statistical model and thus provides physical quantities in simple
forms with less difficulty than other methods. Section 1.2 shows that the
Gaussian distribution successfully describes the end-to-end distance of an

ideal chain.

1.4 Statistics of a Single Polymer Chain

1.4.1 End-to-End Distance of a 1D Random Walk

In Section 1.3, the average end-to-end distance of an ideal chain was deter-
mined based on the distribution of end-to-end distances. This section considers
the probability that an ideal chain has a specific distance ofx. Again, let us start
with a one-dimensional problem. Assuming that the number of steps the point
proceeded in the+ direction is N, and that in the — direction is N _ in the previ-
ously mentioned one-dimensional problem, the following equations are obtained:

N=N,+N_ (1.4)
x=N, —N_ (1.5)

For simplicity, we can assume that the length of a step is unity and estimate
the number of situations (W (N, x)) in the case that the point reachesx after N

steps. Because sets of N, and N _ for arriving at x are uniquely determined from
Egs. (1.4) and (1.5), W (N, x) is estimated as the number of arrangements ofN ,

pieces of “+” and N _ pieces of “-" (Figure 1.4):

W (N,x) = <,\T+> e mi)lNJ = (N;>'I\"<N_>| (1.6)
2
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On the other hand, the total number of possible paths inN steps is 2V, which
is calculated as the total number of situations that can occur when selecting one
of the two choicesN times. Thus, the probability of reaching x after N steps is
expressed as follows:

W(N,x) N!
N oN (M)l (M I
2 2
Calculating the exact value for all N is a very painful task; however, if we make
a proper approximation at a sufficiently large limit of N, this equation leads to a

(1.7)

N——

Figure 1.4 Number of situations that N=10, x=+2 - N,=6, N_=4

reach x in N steps (N=10,x =+ 2).
E 00
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Gaussian distribution. Let us calculate this value following the method of Rubin-
stein and Colby [4]. First, the natural logarithm is taken of both sides of the
equation:

In<w>=lnN!—NIn2—In<N2+X>!—In<N2_X)! (1.8)

2N

The last two terms are reduced to the following:

(5 =n](G+3) (551 G+ 2)(F ) (3)

x/2

=1In (%)H SZ:In <%+s> (1.9)
In(NZ_X>!: In<%>!— Zln<%+1—s> (1.10)

By substituting Egs. (1.9) and (1.10) into Eq. (1.8), one obtains the following:

x/2 N )
—+S
2

W (N, x) N
In <2—NX>=InN!— NIn2—2In(3>!— SZ}In

x/2

N
+ In<—+1—s>
2 (3

/N
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N
N x/2 <3 + S)

—InNI- NIn2—2In<—>!— Nin—~>~_
2 s=1 <%+1—S>

The fourth term in Eq. (1.11) can be rewritten as the following:

(1.11)

In

<N+s> <1+2_s) )
(%ihs):m (1+%>=In(1+§)"”(1+2,\125> (1.12)

Here, we apply an important approximation of the relationship betweensand N.
The maximum value of s is N/2, and the number of situations corresponding to
this case is only 1. In most cases, s stays close to the origin (see one-dimensional
walks), making it sufficiently smaller than N. Here, by ignoring the case oflarge
s, which is unlikely, and only considering the case wheres <<N, the expression
can be further transformed using a Taylor expansion (In(1 +y) = y).

2s 2—-2s 2s 2-2s 4s
In<1+—>—|n<1+ )N - = —=-
N N

~ 22 1.1
N SN N (1.13)

2
N

Using Eq. (1.13), Eq. (1.11) can be transformed to the following:

X 2

In <W)=InN!— NIn2—2In<%>!— Z(%S—%)
= InN!- NIn2—2In<%>!— %Z”%Zﬁ

= InNI= N In2—2|n<%>!—
N
=InN!—NIn2—2In<E>!—— (1.14)

Equation (1.14) can be reduced using the following Starling approximation:

N

NI 2nN(ﬁ> for N>>1 (1.15)
e
W (N, 2
in ((WNN.X) =|nN1—N|n2—2|n(ﬁ>!—X—
2N 2 2N
N N N N/ 2 X2
= 2N(—> “NIn2-2I N<—> _x
n( N {3 ) n n<,/7r > N
2
=1In 27rN+Nlnﬁ—NIn2—In7zN—NInM—X—
e 2e 2N

=|n< L>_X_2 (1.16)
ZN )T 2N
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As a result, the probability is given by the following:

W (N, x) 2 x?
)2 117
N N eXp< 2N ) (1.17)

If we consider x to be a continuous value and this function to be a continuous
function, Eq. (1.17) corresponds to a probability density distribution function.
To investigate the function, let us integrate it from —co to co:

[t [ ol o

(1.18)

Since this calculation corresponds to calculating “the sum of probabilities,” it is
natural that the value of the integral is 1. The doubled integral value comes from
the procedure of converting discretex to continuous x. As shown in Table 1.1,

in the lattice space, whenN is an even number, the probability thatx becomes
odd is 0. On the other hand, if N is an odd number, the probability thatx will
be even is 0. Therefore, for any case, as x is changed to 1, 2, 3, ..., the probability
alternates between a finite value and 0 (Table 1.1). The integral value of 2 comes
from simply changing the discontinuous function to a continuous function.

Table 1.1 Number of situations reaching x in N steps.

X -4 -3 -2 -1 0 1 2 3 4
W (N, x) N=3 0 1 0 0 0 1 0
N =4 1 0 0 0
5%102 : : : — Fi'gu.re 1.§ Probapility density
distribution function of the
one-dimensional Gaussian distribution
4r 7 (P,pwitha=1,N=100).
O 1
a
[a 2 L -
1k i
O 4 1 1 1

-40  -20 0 20 40
x (=)

By standardizing Eq. (1.17) by 2, the probability density function of a one-
dimensional random walk (P, (N, x)) is obtained.

P, (N,x) = — exp( X2> (1.19)
1D\ A= 5N .
2zN 2N

9
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This equation is the same as the Gaussian distribution with an average (<x>)
of 0 and a variance (<x2>) of N(Figure 1.5). The general Gaussian distribution is
expressed as follows:

f(x) =

_ 2
x=o) ) (1.20)

"’27[<X2> 2<X2>
At the end of the one-dimensional problem, let Eq. (1.20) be expanded to an arbi-

trary step length. When the step length isa,<x>= 0 and<x?>= a2N, resulting in
the following:

Pin(N,x) = (1.21)

1 < X2 >
V27za2N 2a’N

1.4.2 End-to-End Distance of a 3D Random Walk

Let us expand the 1D discussion to three dimensions. In 3D space, the probability
that one end is at the origin and the other atr = (r,, fy r,) is expressed as follows:

Psp(N, r)dr, dry dr, = P,p(N,r)dr,- P1D(N,ry)dry- Pio(N,r,)dr, (1.22)

By obtaining the root mean square ofr from Eq. (1.3) and assuming the spatial
isotropy, the following equation is obtained:
<r?>=<r>+<r>+<r,>>= Na’
Na?
3

Here, we focus on the x-axis component. From Egs. (1.21) and (1.23), the follow-
ing equation is obtained:

b N 1 r2 3 3r,2
1) = exp (- =1/ ——exp| -
1 \2r<r > P\ <) = V 2znaz P " anaz

(1.24)

al>=<rt>=<rl>= (1.23)

The y- and z-axis components are estimated in similar ways and substituted
into Eq. (1.22).

P3p(N, 1) = Pip(N, 1) Pip(N, 1) - Pip(N, ;)

< 3 )3’ 3(r,2 + ry2 +1,2)
= exp| —————
27Na? P 2Na?

< 3

2
32
3r2
exp | — (1.25)
27cNa2> p( 2Na2>
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Compared with Eq. (1.21), the probability density functions in one dimension
and three dimensions are almost the same. However, the probability distribu-
tion that the distance between both ends becomesr| differs greatly between one
dimension and three dimensions. In one dimension, the probability distribution
(r = 0) is written as follows since the distance between the ends beingr| only
occurs in two cases: the cases of—r and +r.

Prip(N,|r]) =2 ;ex - = Lex -
1o \/ 2zNa2 P{ " 2Na2 \ zNa2 P{ " 2Na2

(1.26)

Because there is only one situation forr = 0, the probability distribution is given

by
1 r?
Pr1D(N,|r|)= Wexp —m (127)

In the case of three dimensions, we need to consider a multiplicity factor of
r? because the end-to-end distance of | occurs everywhere on the spherical
érell with radius |r|. Thus, the probability distribution can be written as follows:

Pr (N, 1)) = 4nr?(—3—) " 3r2 1.28
ol = e (555 ) e (5 (.28

Figure 1.6 shows the probability distributions of one-dimensional and three-
mensional end-to-end distances. Their shapes are completely different from
dach other; in one dimension, there is a local maximum in the vicinity of r = 0,

0.10

1 Figure 1.6 Probability distribution of
end-to-end distances of one-dimensional

0.08 and three-dimensional random walks.

0.06

Pr (-)

0.04

0.02

<r2>1/2/aN1/2 (=)

whereas in three dimensions, there is a local maximum in the vicinity of aN /2,
Notably, the probability that the random coil returns to the vicinity of the origin
is almost 0 in three dimensions. This difference is obviously due to the multiplica-
tion factor of 4zr?, as there was no significant difference in the probability density
distribution itselfin one dimension and three dimensions. In three-dimensional
space, onlyr, =r = r, = Osatisfies |r| = 0, whereas there are many combinations
ofr,, 1, r, thatsatisfiesr,? +r 2 +r,? = [r|?, when|r| # 0. This difference in multi-
plicity causes the major difference in the one-dimensional and three-dimensional
probability distributions.



